Pascasarjana

Pascasarjana

Rabu, 09 Oktober 2013

Ekspresi Gen THH


Perubahan ekspresi gen dipengaruhi oleh lingkungan dan pada gilirannya mengubah ekspresi gen tersebut. Ini disebut dengan mekanisme epigenetik. Profesor Moshe Szyf (McGill University) mengatakan bahwa trauma masa kecil dapat mengubah ekspresi gen. Mereka menggunakan sampel 36 otak, yaitu 12 korban bunuh diri dan dirundung; 12 korban bunuh diri
tanpa dirundung, dan 12 kontrol. Mereka menemukan bahwa terdapat perbedaan marka epigenetik pada otak dari kelompok yang dirundung, yaitu gen GR (glucocorticoid receptor) yang mengalami metilasi. Penelitian pada tikus yang kurang mendapatkan perhatian dari induknya memperlihatkan adanya metilasi yang sama pada gen GR. Marka-marka tersebut mempengaruhi fungsi hypothalamic-pituitary-adrenal (HPA), respons stres yang meningkatkan resiko bunuh diri. Lingkungan sosial dapat memanipulasi ekspresi gen yang penting bagi reaktivitas stress dan regulasi suasana hati. Proses epigenetik bersifat reversible, artinya bisa dikembalikan ke keadaan sedia kala. Anak-anak atau orang dewasa yang dirundung bisa dijauhkan dari pelaku perundungan atau lingkungan yang menyebabkan perundungan.
Mekanisme Pengaturan Ekspresi Gen
Produk-produk gen tertentu seperti protein ribosomal, rRNA, tRNA, RNA polimerase, dan enzim-enzim yang mengatalisis berbagai reaksi metabolisme yang berkaitan dengan fungsi pemeliharaan sel merupakan komponen esensial bagi semua sel. Gen-gen yang menyandi pembentukan produk semacam itu perlu diekspresikan terus-menerus sepanjang umur individu di hampir semua jenis sel tanpa bergantung kepada kondisi lingkungan di sekitarnya. Sementara itu, banyak pula gen lainnya yang ekspresinya sangat ditentukan oleh kondisi lingkungan sehingga mereka hanya akan  diekspresikan pada waktu dan di dalam jenis sel tertentu. Untuk gen-gen semacam ini harus ada mekanisme pengaturan ekspresinya.
Pengaturan ekspresi gen dapat terjadi pada berbagai tahap, misalnya transkripsi, prosesing mRNA, atau translasi. Namun, sejumlah data hasil penelitian menunjukkan bahwa pengaturan ekspresi gen, khususnya pada prokariot, paling banyak terjadi pada tahap transkripsi.
Mekanisme pengaturan transkripsi, baik pada prokariot maupun pada eukariot, secara garis besar dapat dibedakan menjadi dua kategori utama, yaitu (1) mekanisme yang melibatkan penyalapadaman (turn on and turn off) ekspresi gen sebagai respon terhadap perubahan kondisi lingkungan dan (2) sirkit ekspresi gen yang telah terprogram (preprogramed circuits). Mekanisme penyalapadaman sangat penting bagi mikroorganisme untuk menyesuaikan diri terhadap perubahan lingkungan yang seringkali terjadi secara tiba-tiba. Sebaliknya, bagi eukariot mekanisme ini nampaknya tidak terlalu penting karena pada organisme ini sel justru cenderung merespon sinyal-sinyal yang datang dari dalam tubuh, dan di sisi lain, sistem sirkulasi akan menjadi penyangga bagi sel terhadap perubahan kondisi lingkungan yang mendadak tersebut. Pada mekanisme sirkit, produk suatu gen akan menekan transkripsi gen itu sendiri dan sekaligus memacu transkripsi gen kedua, produk gen kedua akan menekan transkripsi gen kedua dan memacu transkripsi gen ketiga, demikian seterusnya. Ekspresi gen yang berurutan ini telah terprogram secara genetik sehingga gen-gen tersebut tidak akan dapat diekspresikan di luar urutan. Oleh karena urutan ekspresinya berupa sirkit, maka mekanisme tersebut dinamakan sirkit ekspresi gen.

Pengaturan Ekspresi Gen pada Eukariot
Hingga sekarang kita baru sedikit sekali mengetahui mekanisme pengaturan ekspresi gen pada eukariot. Namun, kita telah mengetahui bahwa pada eukariot tingkat tinggi gen-gen yang berbeda akan ditranskripsi pada jenis sel yang berbeda. Hal ini menunjukkan bahwa mekanisme pengaturan pada tahap transkripsi, dan juga prosesing mRNA, memegang peran yang sangat penting dalam proses diferensiasi sel.
Operon, kalau pun ada, nampaknya tidak begitu penting pada eukariot. Hanya pada eukariot tingkat rendah seperti jamur dapat ditemukan satuan-satuan operon atau mirip operon. Semua mRNA pada eukariot tingkat tinggi adalah monosistronik, yaitu hanya membawa urutan sebuah gen struktural. Transkrip primer yang adakalanya menyerupai polisistronik pun akan diproses menjadi mRNA yang monosistronik.
Selain itu, terindikasi juga bahwa diferensiasi sel sedikit banyak melibatkan ekspresi seperangkat gen yang telah terprogram (preprogramed). Berbagai macam sinyal seperti molekul-molekul sitoplasmik, hormon, dan rangsangan dari lingkungan memicu dimulainya pembacaan program-program dengan urutan tertentu pada waktu dan tempat yang tepat selama perkembangan individu. Bukti paling nyata mengenai adanya keharusan urutan pembacaan program pada waktu dan tempat tertentu dapat dilihat pada kasus mutasi yang terjadi pada lalat Drosophila, misalnya munculnya sayap di kepala di tempat yang seharusnya untuk mata. Dengan mempelajari mutasi-mutasi semacam ini diharapkan akan diperoleh pengetahuan tentang mekanisme pengaturan ekspresi gen selama perkembangan normal individu.  
 Pada eukariot tingkat tinggi kurang dari 10 persen gen yang terdapat di dalam seluruh genom akan terepresentasikan urutan basanya di antara populasi mRNA yang telah mengalami prosesing. Sebagai contoh, hanya ada dua hingga lima persen urutan DNA mencit yang akan terepresentasikan pada mRNA di dalam sel-sel hatinya. Demikian pula, mRNA di dalam sel-sel otak katak Xenopus hanya merepresentasikan delapan persen urutan DNAnya. Jadi, sebagian besar urutan basa DNA di dalam genom eukariot tingkat tinggi tidak terepresentasikan di antara populasi mRNA yang ada di dalam sel atau jaringan tertentu. Dengan perkataan lain, molekul mRNA yang dihasilkan dari perangkat gen yang berbeda akan dijumpai di dalam sel atau jaringan yang berbeda pula. Dosis gen dan amplifikasi gen
Kebutuhan akan produk-produk gen pada eukariot dapat sangat bervariasi. Beberapa produk gen dibutuhkan dalam jumlah yang jauh lebih besar daripada produk gen lainnya sehingga terdapat nisbah kebutuhan di antara produk-produk gen yang berbeda. Untuk memenuhi nisbah kebutuhan ini antara lain dapat ditempuh melalui dosis gen. Katakanlah, ada gen A dan gen B yang ditranskripsi dan ditranslasi dengan efisiensi yang sama. Produk gen A dapat 20 kali lebih banyak daripada produk gen B apabila terdapat 20 salinan (kopi) gen A untuk setiap salinan gen B. Contoh yang nyata dapat dilihat pada gen-gen penyandi histon. Untuk menyintesis histon dalam jumlah besar yang dibutuhkan dalam pembentukan kromatin, kebanyakan sel mempunyai beratus-ratus kali salinan gen histon daripada jumlah salinan gen yang diperlukan untuk replikasi DNA.
Salah satu pengaruh dosis gen adalah amplifikasi gen, yaitu peningkatan jumlah gen sebagai respon terhadap sinyal tertentu. Sebagai contoh, amplifikasi gen terjadi selama perkembangan oosit katak Xenopus laevis. Pembentukan oosit dari prekursornya (oogonium) merupakan proses kompleks yang membutuhkan sejumlah besar sintesis protein. Untuk itu dibutuhkan sejumlah besar ribosom. Kita mengetahui bahwa ribosom antara lain terdiri atas molekul-molekul rRNA. Padahal, sel-sel prekursor tidak mempunyai gen penyandi rRNA dalam jumlah yang mencukupi untuk sintesis molekul tersebut dalam waktu yang relatif singkat. Namun, sejalan dengan perkembangan oosit terjadi peningkatan jumlah gen rRNA hingga 4000 kali sehingga dari sebanyak 600 gen yang ada pada prekursor akan diperoleh sekitar dua juta gen setelah amplifikasi. Jika sebelum amplifikasi ke-600 gen rRNA berada di dalam satu segmen DNA linier, maka selama dan setelah amplifikasi gen tersebut akan berada di dalam gulungan-gulungan kecil yang mengalami replikasi. Molekul rRNA tidak diperlukan lagi ketika oosit telah matang hingga saat terjadinya fertilisasi. Oleh karena itu, gen rRNA yang telah begitu banyak disalin kemudian didegradasi kembali oleh berbagai enzim intrasel.

Pengaturan transkripsi
Berdasarkan atas banyaknya salinan di dalam tiap sel, molekul mRNA dapat dibagi menjadi tiga kelompok, yaitu (1) mRNA salinan tunggal (single copy), (2) mRNA semiprevalen dengan jumlah salinan lebih dari satu hingga beberapa ratus per sel, dan (3) mRNA superprevalen dengan jumlah salinan beberapa ratus hingga beberapa ribu per sel. Molekul mRNA salinan tunggal dan semiprevalen masing-masing menyandi enzim dan protein struktural. Sementara itu, mRNA superprevalen biasanya dihasilkan sejalan dengan terjadinya perubahan di dalam suatu tahap perkembangan organisme eukariot. Sebagai contoh, sel-sel eritroblas di dalam sumsum tulang belakang mempunyai sejumlah besar mRNA yang dapat ditranslasi menjadi globin matang. Di sisi lain, hanya sedikit sekali atau bahkan tidak ada globin yang dihasilkan oleh sel-sel prekursor yang belum berkembang menjadi eritroblas. Dengan demikian, kita dapat memastikan adanya suatu mekanisme pengaturan ekspresi gen penyandi mRNA superprevalen pada tahap transkripsi eukariot meskipun hingga kini belum terlalu banyak rincian prosesnya yang dapat diungkapkan.
Salah satu regulator yang diketahui berperan dalam transkripsi eukariot adalah hormon, molekul protein kecil yang dibawa dari sel tertentu menuju ke sel target. Mekanisme kerja hormon dalam mengatur transkripsi eukariot lebih kurang dapat disetarakan dengan induksi pada prokariot. Namun, penetrasi hormon ke dalam sel target dan pengangkutannya ke dalam nukleus merupakan proses yang jauh lebih rumit bila dibandingkan dengan induksi oleh laktosa pada E. coli.
Secara garis besar pengaturan transkripsi oleh hormon dimulai dengan masuknya hormon ke dalam sel target melewati membran sel, yang kemudian ditangkap oleh reseptor khusus yang terdapat di dalam sitoplasma sehingga terbentuk kompleks hormon-reseptor. Setelah kompleks ini terbentuk biasanya reseptor akan mengalami modifikasi struktur kimia. Kompleks hormon-reseptor yang termodifikasi kemudian menembus dinding nukleus untuk memasuki nukleus. Proses selanjutnya belum banyak diketahui, tetapi rupanya di dalam nukleus kompleks tersebut, atau mungkin hormonnya saja, akan mengalami salah satu di antara beberapa peristiwa, yaitu (1) pengikatan langsung pada DNA, (2) pengikatan pada suatu protein efektor, (3) aktivasi protein yang terikat DNA, (4) inaktivasi represor, dan (5) perubahan struktur kromatin agar DNA terbuka bagi enzim RNA polimerase.
Contoh induksi transkripsi oleh hormon antara lain dapat dilihat pada stimulasi sintesis ovalbumin pada saluran telur (oviduktus) ayam oleh hormon kelamin estrogen. Jika ayam disuntik dengan estrogen, jaringan-jaringan oviduktus akan memberikan respon berupa sintesis mRNA untuk ovalbumin. Sintesis ini akan terus berlanjut selama estrogen diberikan, dan hanya sel-sel oviduktus yang akan menyintesis mRNA tersebut. Hal ini karena sel-sel atau jaringan lainnya tidak mempunyai reseptor hormon estrogen di dalam sitoplasmanya. Pengaturan pada tahap prosesing mRNA
Dua jenis sel yang berbeda dapat membuat protein yang sama tetapi dalam jumlah yang berbeda meskipun transkripsi di dalam kedua sel tersebut terjadi pada gen yang sama. Fenomena ini seringkali berkaitan dengan adanya molekul-molekul mRNA yang berbeda, yang akan ditranslasi dengan efisiensi berbeda pula.  
Pada tikus, misalnya, ditemukan bahwa perbedaan sintesis enzim α-amilase oleh berbagai mRNA yang berasal dari gen yang sama dapat terjadi karena adanya perbedaan pola pembuangan intron. Kelenjar ludah menghasilkan α-amilase lebih banyak daripada yang dihasilkan oleh jaringan hati meskipun gen yang ditranskripsi sama. Jadi, dalam hal ini transkrip primernya sebenarnya sama, tetapi kemudian ada perbedaan mekanisme prosesing, khususnya pada penyatuan (splicing) mRNA.
Pengaturan translasi
Berbeda dengan translasi mRNA pada prokariot yang terjadi dalam jumlah yang lebih kurang sama, pada eukariot ada mekanisme pengaturan translasi. Macam-macam pengaturan tersebut adalah (1) kondisi bahwa mRNA tidak akan ditranslasi sama sekali sebelum datangnya suatu sinyal, (2) pengaturan umur (lifetime) molekul mRNA, dan (3) pengaturan laju seluruh sintesis protein.
Telur yang tidak dibuahi secara biologi bersifat statis. Akan tetapi, begitu fertilisasi terjadi, sejumlah protein akan disintesis. Hal ini menunjukkan bahwa di dalam sel telur yang belum dibuahi akan dijumpai sejumlah mRNA yang menantikan datangnya sinyal  untuk translasi. Sinyal tersebut tidak lain adalah fertilisasi oleh spermatozoon, sedangkan molekul mRNA yang belum ditranslasi itu dinamakan mRNA tersembunyi (masked mRNA).
Pengaturan umur mRNA juga dijumpai pada telur yang belum dibuahi. Sel telur ini akan mempertahankan diri untuk tidak mengalami pertumbuhan atau perkembangan. Dengan demikian, laju sintesis protein menjadi sangat rendah. Namun, hal ini bukan akibat kurangnya pasokan mRNA, melainkan karena terbatasnya ketersediaan suatu unsur yang dinamakan faktor rekrutmen. Hingga kini belum diketahui hakekat unsur tersebut, tetapi rupanya berperan dalam pembentukan kompleks ribosom-mRNA.
Sintesis beberapa protein tertentu diatur oleh aktivitas protein itu sendiri terhadap mRNA. Sebagai contoh, konsentrasi suatu jenis molekul antibodi dipertahankan konstan oleh mekanisme inhibisi atau penghambatan diri dalam proses translasi. Jadi, molekul antibodi tersebut berikatan secara khusus dengan molekul mRNA yang menyandinya sehingga inisiasi translasi akan terhambat.Sintesis beberapa protein dari satu segmen DNA
Pada prokariot terdapat mRNA polisistronik yang menyandi semua produk gen. Sebaliknya, pada eukariot tidak pernah dijumpai mRNA polisistronik, tetapi ada kondisi yang dapat disetarakan dengannya, yakni sintesis poliprotein. Poliprotein adalah polipeptida berukuran besar yang setelah berakhirnya translasi akan terpotong-potong untuk menghasilkan sejumlah molekul protein yang utuh. Tiap protein ini dapat dilihat sebagai produk satu gen tunggal. Dalam sistem semacam itu urutan penyandi pada masing-masing gen tidak saling dipisahkan oleh kodon stop dan kodon awal, tetapi dipisahkan oleh urutan asam amino tertentu yang dikenal sebagai tempat pemotongan (cleavage sites) oleh enzim protease tertentu. Tempat-tempat pemotongan ini tidak akan berfungsi serempak, tetapi bergantian mengikuti suatu urutan.
http://trinatallei.net/2013/02/20/bullying-dan-perubahan-ekspresi-gen-di-otak/


Tidak ada komentar:

Posting Komentar